
Angular-dependent matrix potentials for fast molecular-dynamics simulations of transition

metals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 S447

(http://iopscience.iop.org/0953-8984/18/16/S06)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 10:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) S447–S461 doi:10.1088/0953-8984/18/16/S06

Angular-dependent matrix potentials for fast
molecular-dynamics simulations of transition metals

S L Dudarev

EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB, UK

Received 15 August 2005, in final form 6 February 2006
Published 3 April 2006
Online at stacks.iop.org/JPhysCM/18/S447

Abstract
The significance of the part played by the angular-dependent components of
forces associated with d–d bonding between atoms in a transition metal has
long remained a subject of debate. While almost all the large-scale molecular
dynamics simulations of collision cascades and radiation damage in transition
metals and alloys are currently performed using spherically symmetric many-
body potentials, density functional calculations exhibit a highly anisotropic
pattern of charge density deformation in and around the core of interstitial
atom defects. This paper describes a fast second-order matrix recursion-based
algorithm for including effects of angular anisotropy of d–d bonds in a large-
scale molecular dynamics simulation.

1. Introduction

The development of semi-empirical interatomic potentials for simulating defect structures in
transition metals and alloys has recently attracted considerable attention in the field of fusion
and advanced nuclear materials [1, 2]. Modelling interaction of energetic neutrons and ions
with steels and other transition metal alloys requires using potentials suitable for simulating
systems containing in excess of a hundred thousand atoms. Systems of this size are well beyond
the reach of the currently available density functional or tight-binding electronic-structure-
based approaches that can only treat configurations containing no more than ∼1000 atoms.
Hence the overwhelming majority of large-scale molecular-dynamics simulations performed
today are based on the semi-empirical many-body potentials of the Finnis–Sinclair [3–5] or
the embedded atom model (EAM) [6] type where interaction between atoms is described by a
combination of relatively simple radial functions of atomic coordinates.

Until a few years ago the form of these radial functions was determined by fitting to the
observed values of elastic constants and to the equation of state of the material. However,
density functional studies of interstitial and vacancy defects [7–10] showed that semi-empirical
potentials constructed in this way were not sufficiently accurate in describing the relative
energies of defects and defect migration pathways. Owing to this difficulty, the more recent
strategy in the development of interatomic potentials has focused on fitting a potential,
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still taken in its spherically symmetric form, to a more complete input data set including,
for example, energies of formation of interstitial and vacancy defects found using density
functional calculations [11, 12]. The resulting potentials have relatively long range, sometimes
extending far beyond the second coordination cell of atoms in the bcc lattice. At the same time,
the possible effect of angular-dependent forces on the structure and energies of defects in a
transition metal has not been explored.

What is the logic behind describing interatomic interactions in a transition metal by a
spherically symmetric function? Since the atomic d orbitals responsible for this interaction
have strong angular character, it is natural to expect the occurrence of angular-dependent terms
in the expression for interatomic forces. Carlsson [13], Kress and Voter [14], and Foiles [15]
investigated this point numerically using a model where every atom in a transition metal had
exactly five d electrons, and concluded that in this particular case interatomic interactions were
well approximated by spherically symmetric functions. While in the particular case of a half-
filled d band this conclusion agrees with the analysis given below, it does not seem to agree
with the recent density functional calculations showing strong anisotropy of charge density
deformations in the core of interstitial defects [10]. Hence the main argument in favour of
choosing the spherically symmetric functional form of a many-body second-order potential is
not its fundamental validity, but rather its convenience, simplicity and low computational cost.

Directional interatomic forces are currently investigated in connection with structural
stability of transition metals and intermetallic compounds [16, 17], where it is believed that only
the higher order terms (associated with the fourth and the sixth order moments of the density
of states) contain information about the angular character of d–d bonds. There is only one
recent study, carried out by Krasko et al [18], where the effect of angular forces on interatomic
interaction in iron was addressed. Krasko et al assumed that the angular terms had the same
functional form as those in the Tersoff potential for silicon. Since the angular symmetry of
d–d bonds differs from that of s–p bonds, it is unlikely that this approximation provides a
fundamentally consistent starting point for the treatment of interatomic forces in a transition
metal.

In this paper we address two questions. Firstly, what is the contribution of angular terms to
energies and forces at the second-moment level of approximation in the case where the number
of d electrons per atom is not equal to five? Secondly, is there a practical algorithm for carrying
out a large-scale molecular dynamics simulation if the angular terms are included?

Both questions focus mainly on the methodology of a simulation. The significance of
posing these questions comes from the fact that at present the selection of interatomic potentials
suitable for a large-scale molecular dynamics simulation is still very limited. In the case of a
transition metal system there is still no sufficiently simple and logically consistent approach that
would allow taking angular terms into account at a low computational cost. This paper presents
a full derivation of a method capable of taking angular terms into account, and gives a working
example showing that the method can be used to reproduce more accurately the energies
of interstitial defect structures, and to study large-scale collision cascades only accessible at
present to simulations performed using spherically symmetric potentials.

The method is based on the second-order matrix (or block) recursion approximation. The
difference between the scalar and the matrix recursion algorithms consists in that the latter
provides a way of evaluating the elements of the on-site Green’s function and the on-site density
of states for the case where the initial composite state for recursion is degenerate [19, 20].
This point is significant for developing a consistent treatment of interaction between transition
metal atoms since it is the subspace of five degenerate d orbitals that forms the initial state for
recursion. Finding the spectrum of eigenvalues and eigenstates of a matrix recursion solution
for the Green’s function requires diagonalizing a circular matrix similarly to the perturbation
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treatment of a multiplet of degenerate states [21]. Hence a matrix-recursion-based molecular-
dynamics algorithm not only provides a way of treating angular interatomic forces, it also
introduces an essentially quantum mechanical element in a molecular dynamics simulation.
Surprisingly, this does not substantially increase the computational cost of the algorithm, and
practical simulations can still be performed for systems containing 105 or more atoms.

2. The second-level block-recursion approximation

The scalar recursion algorithm for evaluating the on-site element of the Green’s function
G00(E) = [(E + i0) Î − Ĥ ]−1

00 uses a special set of basis states (the so-called Lanczos basis
set [22]), in which the tight-binding Hamiltonian matrix Ĥ is tri-diagonal and the Schrödinger
operator E Î − Ĥ has the form

E Î − Ĥ =



E − a0 −b∗
1 0 · · ·

−b1 E − a1 −b∗
2 · · ·

0 −b2 E − a2 · · ·
· · · · · · · · · · · ·


 . (1)

Both the diagonal ai and the off-diagonal bi elements of the Hamiltonian matrix defined in the
Lanczos basis are related to the conventional real-space hopping matrix elements Hαβ through
a sequence of linear transformations described in [22, 23]. Using the above definition, the 00
on-site element of the inverse matrix Ĝ(E) = [(E + i0) Î − Ĥ ]−1 can be found using the minor
expansion starting from the diagonal element situated in the upper left corner of (1), namely

G00(E) = [(E + i0) Î − Ĥ ]−1
00 = [E + i0 − a0 − b1G11(E)b∗

1]−1

= 1

E + i0 − a0 − |b1|2

E + i0 − a1 − |b2|2
E + i0 − a2 · · ·

. (2)

Here G11(E) is the top diagonal element of the inverse of matrix (1), in which all the elements
of the first column and the first row are deleted. By terminating the recursion expansion at the
second level we find that G00(E) = [E + i0 − a0 − |b1|2/(E + i0 − a1)]−1. This second-order
formula is valid in the case where the initial state of the recursion expansion is non-degenerate.

In the case where the initial state of recursion is a part of a multiplet of degenerate states
(as it is in the case of a transition metal atom where the initial state is a part of a fivefold
degenerate multiplet of 3d states), it is the entire multiplet of states associated with an atom
that has to be treated as a single ‘composite’ initial state [19, 20]. In this case the simplest
second-level recursion expression for the Green’s function has the form

[Ĝ−1
00 (E)]i j = Eδi j − (i |Ĥ †Ĥ | j)/E, (3)

where indices i and j refer to individual orbitals forming the multiplet associated with lattice
site 0, and subscript 00 refers to the on-site element of the Green’s function. Formula (3) shows
that finding the spectrum of Ĝ00(E) requires diagonalizing the matrix (i |Ĥ †Ĥ | j). The matrix
elements of [Ĝ00(E)]i j can be found using the orthogonal transformation

[Ĝ00(E)]i j =
∑

J

Ci J
1

E + i0 − E2
J /(E + i0)

C†
J j , (4)

where the matrix of transformation Ci J consists of eigenvectors of the matrix Ĥ †Ĥ , i.e.

E2
J δJ J ′ =

∑
i j

C†
J i(i |Ĥ †Ĥ | j)C j J ′. (5)
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matrix recursionscalar recursion

Figure 1. Schematic illustration of the difference between the spectra of states generated by the
scalar and the matrix recursion algorithms at the second-moment level of approximation. The
process of formation of covalent ‘multi-centred’ d–d bonding and antibonding states eliminates
the original degeneracy of the multiplet of atomic d states, and is correctly described in the
matrix recursion approximation. At the same level of approximation the scalar recursion approach
(equation (2)) gives rise to a spectrum of states consisting of only two levels.

The energy of interaction between an atom occupying site 0 and atoms occupying neighbouring
sites is given by the integral over the spectrum D00(E) of the projected on-site density of states

Esite 0 = 2
∫ εF

−∞
dE E D00(E) = − 2

π

∫ εF

−∞
dE E

∑
j

Im[Ĝ−1
00 (E)] j j

= − 2

π

∫ εF

−∞
dE E Im

∑
J, j

C j J
1

E + i0 − E2
J /(E + i0)

C†
J j , (6)

where the factor of two comes from summation over spin. Using the fact that Ĉ is orthogonal,
i.e.

∑
j C j J C†

J j = 1, and using the formula Im(x + i0)−1 = −πδ(x), we find that [24, 25]

Esite 0 = − 2

π

∫ εF

−∞
dE E Im

∑
J

E

(E + i0 − |EJ |)(E + i0 + |EJ |)

= − 1

π

∫ εF

−∞
dE E Im

∑
J

[
1

E + i0 − |EJ | + 1

E + i0 + |EJ |
]

= −
∑

J

�B
J |EJ | +

∑
J ′

�A
J ′ |EJ ′ |, (7)

where �B
J and �A

J are the occupation numbers of the local bonding (B) and antibonding (A)
states (these states have energies E = −|EJ | and E = |EJ |, respectively). The states are
occupied sequentially starting from the lowest energy bonding state. The local charge neutrality
condition [26] imposes a constraint according to which the sum of occupation numbers of
bonding and antibonding states must be equal to the total number of electrons on a site. In the
case of d electrons the total number of many-body bonding and antibonding states formed as a
result of interaction of an atom with its neighbours equals ten. The fact that this is indeed the
case is easy to appreciate by considering the example of a diatomic molecule, where a set of
d orbitals centred on each atom gives rise, through hybridization, to a set of five bonding and
five antibonding states. In a transition metal, application of the second-order matrix recursion
to the subspace of five degenerate d orbitals gives rise to the spectrum of states (6) consisting of
ten collective multi-centred bonding and antibonding ‘molecular orbital’ levels. The difference
between the spectra of states generated by the scalar and the matrix recursion algorithms is
illustrated in figure 1.
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A practical molecular-dynamics algorithm based on formula (7) has to satisfy two
requirements. First, it has to rely on a fast diagonalization algorithm for finding the eigenvalues
E2

J of matrix (5) and, second, it has to provide a recipe for evaluating forces acting on atoms.
Below we show how both points can be addressed within a single algorithm.

3. The on-site density of states and the total energy

In the original formulation of the second-order matrix recursion approach [13, 14] the matrix
elements of (i |Ĥ †Ĥ | j) are evaluated numerically by performing a summation over 3d orbitals
associated with every neighbouring atom

(i |Ĥ †Ĥ | j) =
∑

k

∑
nei

(i, 0|Ĥ †|k, nei)(k, nei|Ĥ |0, j). (8)

Here index k refers to atomic orbitals and ‘nei’ refers to neighbouring atoms. Equation (8)
gives rise to a fairly lengthy expression, since each neighbouring atom contributes five terms to
the sum. For example, assuming that the starting recursion lattice site has only one neighbour,
we find that

(xy|Ĥ †Ĥ |xy) = (xy|Ĥ †|xy)(xy|Ĥ|xy) + (xy|Ĥ †|yz)(yz|Ĥ|xy) + (xy|Ĥ †|zx)(zx |Ĥ|xy)

+ (xy|Ĥ †|x2 − y2)(x2 − y2|Ĥ |xy) + (xy|Ĥ †|3z2 − r 2)(3z2 − r 2|Ĥ |xy),

(9)

where the |xy) orbital is centred on site 0. Substituting the Slater–Koster formulae [27] for the
hopping matrix elements into this equation, we arrive at

(xy|Ĥ †Ĥ |xy) = [3l2m2(ddσ) + (l2 + m2 − 4l2m2)(ddπ) + (n2 + l2m2)(ddδ)]2

+ [3lm2n(ddσ) + ln(1 − 4m2)(ddπ) + ln(m2 − 1)(ddδ)]2

+ [3l2mn(ddσ) + mn(1 − 4l2)(ddπ) + mn(l2 − 1)(ddδ)]2

+ [
3
2 lm(l2 − m2)(ddσ) + 2lm(m2 − l2)(ddπ) + 1

2 lm(l2 − m2)(ddδ)
]2

+
[√

3lm[n2 − 1
2 (l2 + m2)](ddσ) − 2

√
3lmn2(ddπ)

+
√

3

2
lm(1 + n2)(ddδ)

]2

, (10)

where l, m and n are direction cosines of the vector pointing from one atom to the other. The
5 × 5 matrix (i |Ĥ †Ĥ | j) has 15 independent matrix elements analogous to (10). Evaluating
forces acting on atoms requires differentiating these matrix elements. Since very lengthy
expressions are not convenient for carrying out differentiation, we investigate the possibility
of simplifying the above formulae by projecting the starting subspace of orbitals onto another
subspace defined in a specially chosen system of coordinates. We write equation (8) in the
form

(i |Ĥ †Ĥ | j) =
∑
nei

[
(i, 0|Ĥ †|σ, nei)(σ, nei|Ĥ |0, j)

+ (i, 0|Ĥ †|π1, nei)(π1, nei|Ĥ |0, j) + (i, 0|Ĥ †|π2, nei)(π2, nei|Ĥ |0, j)

+ (i, 0|Ĥ †|δ1, nei)(δ1, nei|Ĥ |0, j) + (i, 0|Ĥ †|δ2, nei)(δ2, nei|Ĥ |0, j)
]
, (11)

where the new five 3d orbitals, σ , π1, π2, δ1 and δ2, are defined in a virtual Cartesian system of
coordinates where the z-axis is parallel to the direction of the bond linking the initial recursion
lattice site and a neighbouring atom. For example, |σ) denotes the |3z2 − r 2) orbital defined in
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the system of coordinates where the z-axis is parallel to the interatomic bond. In the azimuthal
and polar angle representation this orbital has the form

(θ, φ|σ) =
√

5

16π
[3(e · ν)2 − 1], (12)

where ν is a unit vector in the direction of the bond, and vector e has components e =
(sin θ cos φ, sin θ sin φ, cos θ). Similarly, |π1) and |π2) states are the |zx) and |zy) states
defined in the above virtual system of coordinates, and |δ1) and |δ2) states are the corresponding
|xy) and |x2 − y2) states. Introducing the distance-dependent Slater–Koster coefficients
(ddσ) = {(ddσ)(R)}, (ddπ) = {(ddπ)(R)}, and (ddδ) = {(ddδ)(R)}, we write

(i |Ĥ †Ĥ | j) =
∑
nei

[(i, 0|σ, 0)(σ, 0|0, j){(ddσ)(Rnei)}2

+ {(i, 0|π1, 0)(π1, 0|0, j) + (i, 0|π2, 0)(π2, 0|0, j)}{(ddπ)(Rnei)}2

+ {(i, 0|δ1, 0)(δ1, 0|0, j) + (i, 0|δ2, 0)(δ2, 0|0, j)}{(ddδ)(Rnei)}2], (13)

where Rnei is the distance between the central atom and its neighbour.
Matrix elements (i |Ĥ †Ĥ | j) can now be readily evaluated by integrating over the solid

angle. For example,

(3z2 − r 2, 0|σ, 0) = 5

16π

∫
d
e

[
3(e · n)2 − 1

] [
3(e · ν)2 − 1

] = 1

2

[
3(n · ν)2 − 1

]
.

To perform the integration we use the formulae∫
d
e ei e j = 4π

3
δi j∫

d
e ei e j ekel = 4π

15

[
δi jδkl + δikδ jl + δilδ jk

]
,

(14)

where ei = (ex , ey, ez) are the Cartesian components of the unit vector e =
(sin θ cos φ, sin θ sin φ, cos θ). Using the Slater–Koster notation l = νx = (nx · ν), m =
ν y = (ny · ν), and n = νz = (nz · ν), and by carrying out the integration, we evaluate all the
projections of 3d orbitals defined in the conventional Cartesian system of coordinates onto the
set of ‘virtual’ orbitals |σ), |π1) and |π2), namely

(xy|σ) = √
3lm,

(xz|σ) = √
3ln,

(yz|σ) = √
3mn,

(x2 − y2|σ) =
√

3

2

(
l2 − m2

)
,

(3z2 − r 2|σ) = 1
2

(
3n2 − 1

)
,

(15)

and
(xy|π1) = (nx ·λx)(ny · ν) + (ny · λx)(nx · ν),

(xy|π2) = (nx ·λy)(ny · ν) + (ny · λy)(nx · ν),

(xz|π1) = (nx · λx)(nz · ν) + (nz ·λx)(nx · ν),

(xz|π2) = (nx · λy)(nz · ν) + (nz ·λy)(nx · ν),

(yz|π1) = (ny · λx)(nz · ν) + (nz ·λx)(ny · ν),

(yz|π2) = (ny · λy)(nz · ν) + (nz ·λy)(ny · ν),

(x2 − y2|π1) = (nx · λx)(nx · ν) − (ny ·λx)(ny · ν),

(x2 − y2|π2) = (nx · λy)(nx · ν) − (ny ·λy)(ny · ν),

(3z2 − r 2|π1) = √
3(nz ·λx)(nz · ν),

(3z2 − r 2|π2) = √
3(nz ·λy)(nz · ν).

(16)
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Here λx and λy are the unit vectors of the x and the y axes of the virtual system of coordinates.
Using the fact that for any two arbitrarily chosen vectors a and b the unit vectors λx and λy

satisfy the equation

(a ·λx)(b · λx) + (a ·λy)(b · λy) = (a · b) − (a · ν)(b · ν),

we find a simple formula for the matrix element (10)

(xy|Ĥ †Ĥ |xy) = (xy|σ)(σ |xy)(ddσ)2 + [(xy|π1)(π1|xy) + (xy|π2)(π2|xy)](ddπ)2

= 3l2m2(ddσ)2 + (ddπ)2
{[(nx · λx)(ny · ν) + (ny ·λx)(nx · ν)]2

+ [(nx ·λy)(ny · ν) + (ny · λy)(nx · ν)]2
}

= 3l2m2(ddσ)2 + [
m2 + l2 − 4m2l2

]
(ddπ)2. (17)

By carrying out similar calculations we evaluate all the 15 independent elements of the matrix
Ĥ † Ĥ , namely

(xy|Ĥ †Ĥ |xy) = 3l2m2 (ddσ)2 + (
l2 + m2 − 4l2m2

)
(ddπ)2 ,

(xy|Ĥ †Ĥ |yz) = 3lm2n (ddσ)2 + ln
(
1 − 4m2

)
(ddπ)2 ,

(xy|Ĥ †Ĥ |xz) = 3l2mn (ddσ)2 + mn
(
1 − 4l2

)
(ddπ)2 ,

(xy|Ĥ †Ĥ |x2 − y2) = 3
2 lm

(
l2 − m2

)
(ddσ)2 + 2lm

(
m2 − l2

)
(ddπ)2 ,

(xy|Ĥ †Ĥ |3z2 − r 2) = √
3lm

[
n2 − 1

2

(
l2 + m2

)]
(ddσ)2 − 2

√
3lmn2 (ddπ)2 ,

(yz|Ĥ †Ĥ |yz) = 3m2n2 (ddσ)2 + (
m2 + n2 − 4m2n2

)
(ddπ)2 ,

(yz|Ĥ †Ĥ |xz) = 3n2lm (ddσ)2 + lm
(
1 − 4n2

)
(ddπ)2 ,

(yz|Ĥ †Ĥ |x2 − y2) = 3
2 mn

(
l2 − m2

)
(ddσ)2 − mn

[
1 + 2

(
l2 − m2

)]
(ddπ)2 ,

(yz|Ĥ †Ĥ |3z2 − r 2) = √
3mn

[
n2 − 1

2

(
l2 + m2

)]
(ddσ)2 + √

3mn
(
l2 + m2 − n2

)
(ddπ)2 ,

(xz|Ĥ †Ĥ |xz) = 3n2l2 (ddσ)2 + (
n2 + l2 − 4n2l2

)
(ddπ)2 ,

(xz|Ĥ †Ĥ |x2 − y2) = 3
2 nl

(
l2 − m2

)
(ddσ)2 + nl

[
1 − 2

(
l2 − m2

)]
(ddπ)2 ,

(xz|Ĥ †Ĥ |3z2 − r 2) = √
3ln

[
n2 − 1

2

(
l2 + m2

)]
(ddσ)2 + √

3ln
(
l2 + m2 − n2

)
(ddπ)2 ,

(x2 − y2|Ĥ † Ĥ |x2 − y2) = 3
4

(
l2 − m2

)2
(ddσ)2 +

[
l2 + m2 − (

l2 − m2
)2

]
(ddπ)2 ,

(x2 − y2|Ĥ † Ĥ |3z2 − r 2) =
√

3

2

(
l2 − m2

) [
n2 − 1

2

(
l2 + m2

)]
(ddσ)2

+ √
3n2

(
m2 − l2

)
(ddπ)2 ,

(3z2 − r 2|Ĥ †Ĥ |3z2 − r 2) = [
n2 − 1

2

(
l2 + m2

)]2
(ddσ)2 + 3n2

(
l2 + m2

)
(ddπ)2 .

(18)

The compact analytical expressions for the matrix elements of Ĥ †Ĥ given above can now be
used for numerical programming, as well as for analytical calculations. For example, matrix
elements (18) can be readily differentiated analytically, providing a way of rapidly evaluating
forces acting on atoms.

A more complete list of matrix elements of Ĥ †Ĥ , including also the (ddδ) part of the
Slater–Koster overlap integrals, is given in appendix A. Additional matrix elements describing
the s–d hybridization effects are given in appendix B.

To find the spectrum of the on-site density of states, matrix elements (18) must now be
summed over all the neighbouring lattice sites (see equation (8)) within the range of the Slater–
Koster radial functions {(ddσ)(R)}, {(ddπ)(R)} and {(ddδ)(R)}. The resulting 5×5 (or 6×6,
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if the s–d hybridization is included) Ĥ †Ĥ matrix is diagonalized, producing the energies ∓|EJ |
of the local bonding and antibonding states. The total energy of bonds between a given atom
and its neighbours is then found by means of equation (7). Finding forces acting on atoms does
not require differentiating the eigenstates, and the procedure for finding forces is described in
the next section.

4. Forces acting on atoms

In a quantum mechanical treatment, forces acting on atoms are evaluated by means of the
Hellmann–Feynman theorem [28]. This theorem is based on the fact that the eigenstates of a
Hermitian Hamiltonian operator are orthogonal and normalized, and hence the differentiation
of these eigenstates gives no contribution to forces.

A significant difference between the matrix recursion approach and the more conventional
quantum mechanical treatment of interatomic forces is that in the matrix recursion approach we
diagonalize the square of the hopping Hamiltonian matrix rather than the Hamiltonian matrix
itself. Hence in the matrix recursion approach the Hellmann–Feynman theorem does not apply.

To evaluate forces we first introduce a notation Di j = (i |Ĥ †Ĥ | j). Equation (5) now has
the form

E2
J δJ J ′ =

∑
i j

C†
J i Di j C j J ′ . (19)

Assume that matrix Di j is a function of some external parameter ξ , i.e. Di j = Di j(ξ). The
eigenvalues and eigenvectors of this matrix are functions of ξ , too, namely

E2
J (ξ) =

∑
i j

C†
J i (ξ)Di j(ξ)C j J (ξ). (20)

To determine how an eigenvalue E2
J varies in response to an infinitesimal variation of parameter

ξ , we write

E2
J (ξ) − E2

J (ξ0) =
∑

i j

C†
J i(ξ0)

[
Di j (ξ) − Di j(ξ0)

]
C j J (ξ0). (21)

This equation takes into account the fact that the response of the matrix of eigenstates CJ i(ξ)

to a small perturbation is of the second order in the perturbation parameter, while the variation
of an eigenvalue is linear in the perturbation [21]. In the limit ξ − ξ0 → 0 we find that

∂

∂ξ
E2

J (ξ) =
∑

i j

C†
J i(ξ)

[
∂

∂ξ
Di j (ξ)

]
C j J (ξ). (22)

This gives rise to a simple formula for the derivative of an eigenstate

∂

∂ξ
EJ (ξ) = 1

2EJ (ξ)

∂

∂ξ
E2

J (ξ) = ∓
∑

i j C†
J i(ξ)

[
∂

∂ξ
Di j(ξ)

]
C j J (ξ)

2
√∑

i j C†
J i(ξ)Di j (ξ)C j J (ξ)

, (23)

where the minus sign refers to a bonding and the plus sign refers to an antibonding state. In
a molecular dynamics simulation we differentiate the eigenstates with respect to the relative
position of an atom Rαβ . Hence the force acting on an atom is given by

Fα = 1

2

∑
β, β �=α

∑
J

�
(B)
J

{
1

|EJ (α)|
∑
i, j

C†
J i(α)

[
∂

∂Rα

Di j (Rα − Rβ)

]
C j J (α)

+ 1

|EJ (β)|
∑
i, j

C†
J i(β)

[
∂

∂Rα

Di j (Rα − Rβ)

]
C j J (β)

}
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− 1

2

∑
β, β �=α

∑
J ′

�
(A)
J ′

{
1

|EJ ′(α)|
∑
i, j

C†
J ′i (α)

[
∂

∂Rα

Di j(Rα − Rβ)

]
C j J ′(α)

+ 1

|EJ ′(β)|
∑
i, j

C†
J ′i (β)

[
∂

∂Rα

Di j(Rα − Rβ)

]
C j J ′(β)

}
, (24)

and summation over J, J ′ is performed over all the occupied (bonding and antibonding) states.
Formula (24) gives a recipe for evaluating forces acting on atoms in the second-order

matrix recursion molecular dynamics algorithm. To find the forces we do not need to
differentiate the matrix of eigenstates Ci J , and this reduces the computational cost of the
algorithm to a minimum. In practical terms, the only significant difference between a
conventional ‘classical’ molecular dynamics algorithm and the matrix recursion algorithm
consists in the step involving the diagonalization of a small matrix. The small size of the Ĥ †Ĥ
matrix and the fact that equation (24) is not too sensitive to the accuracy of the diagonalization
algorithm makes the computational cost of the diagonalization step (19) acceptable for practical
large-scale molecular dynamics simulations.

5. Applications of the method

Before discussing applications of the method based on the formalism described above, we
investigate the connection between the second-order matrix algorithm and the Finnis–Sinclair
approximation [3, 4]. What happens if we average the matrix elements of Ĥ †Ĥ over the solid
angle of 4π? Using the formulae

l2 = m2 = n2 = 1
3 ,

l4 = m4 = n4 = 3
15 ,

l2m2 = m2n2 = n2l2 = 1
15 ,

(25)

where

f (θ, φ) = 1

4π

∫
d
 f (θ, φ) = 1

4π

∫ 2π

0
dφ

∫ π

0
sin θ dθ f (θ, φ),

we find that

(i |Ĥ †Ĥ | j) = δi j

∑
nei

{
1
5 [(ddσ)(Rnei)]2 + 2

5 [(ddπ)(Rnei)]2 + 2
5 [(ddδ)(Rnei)]2

}
. (26)

This equation shows that the average of the matrix Ĥ †Ĥ is proportional to the unit matrix δi j ,
and the pre-factor equals one-fifth of the second moment of the density of states µ2 given by
equation (7.155) of [4].

We note that it follows from equation (13) that the trace of the matrix Ĥ † Ĥ

Tr(Ĥ †Ĥ) =
∑

i

(i |Ĥ †Ĥ |i) =
∑

i

∑
nei

[
(σ, 0|0, i)(i, 0|σ, 0){(ddσ)(Rnei)}2

+ {(π1, 0|0, i)(i, 0|π1, 0) + (π2, 0|0, i)(i, 0|π2, 0)}{(ddπ)(Rnei)}2

+ {(δ1, 0|o, i)(i, 0|δ1, 0) + (δ2, 0|0, i)(i, 0|δ2, 0)}{(ddδ)(Rnei)}2
]

=
∑
nei

[
(σ, 0|σ, 0){(ddσ)(Rnei)}2

+ {(π1, 0|π1, 0) + (π2, 0|π2, 0)}{(ddπ)(Rnei)}2

+ {(δ1, 0|δ1, 0) + (δ2, 0|δ2, 0)}{(ddδ)(Rnei)}2
]

=
∑
nei

[{(ddσ)(Rnei)}2 + 2{(ddπ)(Rnei)}2 + 2{(ddδ)(Rnei)}2
]
, (27)
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is also proportional to the second moment of the density of states µ2 given by equation (7.155)
of [4]. Hence the operation of taking the trace of the matrix (i |Ĥ †Ĥ | j) is in some ways
equivalent to averaging the matrix elements of (i |Ĥ †Ĥ | j) over the direction of bonds linking
an atom to its neighbours. A corollary of this fact is that the matrix

Di j = (i |Ĥ †Ĥ | j) − (i |Ĥ †Ĥ | j), (28)

has zero trace, and its elements describe the net angular-dependent part of the energy of many-
body interaction between atoms in a transition metal.

Furthermore, the fact that the trace of a matrix is invariant with respect to an orthogonal
transformation shows that eigenvalues of matrix (i |Ĥ †Ĥ | j) satisfy the condition

5∑
J=1

E2
J =

∑
nei

[{(ddσ)(Rnei)}2 + 2{(ddπ)(Rnei)}2 + 2{(ddδ)(Rnei)}2
]
.

This condition implies that in the case of a half-filled band the contribution of angular terms
to bonding is a minimum. This justifies the use of the Finnis–Sinclair spherically symmetric
form of the many-body potential and explains why Kress and Voter [14], and Carlsson [13] did
not find evidence for a significant part being played by angular forces in the case where the
number of d electrons per atom was assumed to be equal to five. It is only this special case
that was investigated in the past by Carlsson [13] and Foiles [15], as illustrated for example
by the use of the trace operator in equation (4) of [13] and in equation (6) of [15]. In the
half-filled band case the difference between the total energies evaluated using the matrix and
the scalar recursion approaches is relatively small. This stems from the fact that splitting of a
multiplet of degenerate states does not affect the position of the centre of gravity of the multiplet
(although one should note that in the case of matrix recursion considered above this statement
applies to the multiplet of squares of eigenvalues given by equations (5) and (19) rather than
to the multiplet of eigenvalues themselves). The conclusion about the relative insignificance of
effects associated with the matrix character of the potential [13, 15] is therefore applicable only
to the case where the number Nd of d electrons per atom equals five, and hence in a general
case angular forces do contribute to interaction between atoms in a transition metal even at the
second-moment level of approximation.

It is probably natural to expect that angular terms associated with direct overlap between
3d orbitals become more significant at close separation between the atoms, and that at larger
distances the interaction is relatively well approximated by a simpler angular-independent
expression based on equation (26). To take this into account we introduce the ‘quantum core’
approximation [24, 25] and write the matrix Di j in the form

Di j = 1
5δi jµ2(R) +

[
(i |Ĥ †Ĥ | j) − (i |Ĥ †Ĥ | j)

]
, (29)

where the radial functions entering the term in square brackets have shorter range than the
function µ2(R). In the examples considered below we also used an additional simplifying
assumption that the Slater–Koster hopping integrals (ddσ), (ddπ) and (ddδ) scale as 2:−1:0
and hence

Di j (θ, φ, R) = 1
5δi jµ2(R) + [Di j(θ, φ) − 3

10δi j
]

g(R). (30)
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In this case the 15 independent elements of the matrix Di j have the form

Dxy,xy = 1
4 (l

2 + m2 + 8l2m2)

Dxy,yz = 1
4 ln(1 + 8m2)

Dxy,xz = 1
4 mn(1 + 8l2)

Dxy,x2 −y2 = lm(l2 − m2)

Dxy,3z2 =
√

3

2
lm(n2 − l2 − m2)

Dyz,yz = 1
4 (m2 + n2 + 8m2n2)

Dyz,zx = 1
4 lm(1 + 8n2)

Dyz,x2−y2 = mn
[
l2 − m2 − 1

4

]

Dyz,3z2 =
√

3

4
mn

[
3n2 − (l2 + m2)

]

Dzx,zx = 1
4 (n2 + l2 + 8n2l2)

Dzx,x2 −y2 = nl
(
l2 − m2 + 1

4

)

Dzx,3z2 =
√

3

4
ln

[
3n2 − (l2 + m2)

]

Dx2−y2,x2−y2 = (l2 − m2)2

2
+ (l2 + m2)

4

Dx2−y2,3z2 =
√

3

4
(l2 − m2)

[
n2 − l2 − m2

]

D3z2,3z2 = 1
4

[
4n4 − n2(l2 + m2) + (l2 + m2)2

]
.

(31)

In the limiting case where g(R) = 0 formula (29) gives energies and forces identical to those
of the Finnis–Sinclair potential model [3]. The short-range angular-dependent core term in
equation (29) can be used to improve the values of formation energies of interstitial atom
defects predicted by the model.

The numerical implementation of the quantum core approximation is relatively
straightforward. In the case of vanadium (where each atom has four d electrons) the first
(radial) part of equation (30) is represented by the embedding part of the Ackland–Thetford
parametrization [5] of the Finnis–Sinclair model. The radial behaviour of the short-range
correction to the Finnis–Sinclair model is approximated by a core term

f (R) =
(

1 − R

R0

)3 [
A0 + A1

(
1 − R

R0

)]
, R < R0.

The cut-off radius of the core term, R0 = 2.58 Å, is chosen in such a way that the presence of
this term does not affect the equilibrium properties of the original potential (for example, the
original fitted values of elastic constants of the Ackland–Thetford parametrization [5] are not
influenced by the core term). The coefficients A0 and A1 of the pairwise part of the potential,
the radial embedding part, and the angular-dependent part are chosen to provide the best fit to
the values of defect formation energies found using density functional calculations.

A(pair)
0 = 64.475 066 086 1573 eV Å

6

A(pair)
1 = −187.475 864 392 667 eV Å

6

A(isotr)
0 = 78.297 828 239 0324 eV2 Å

6

A(isotr)
1 = 79.793 162 857 1741 eV2 Å

6

A(angular)
0 = −145.372 669 797 215 eV2 Å

6

A(angular)
1 = 229.737 328 736 310 eV2 Å

6
.

(32)
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Figure 2. Snapshot of a simulated 380 eV cascade in vanadium taken at t = 0.33 ps after the
initial impact of an energetic neutron on an atom. This simulation, involving 265 302 atoms,
was performed using the matrix potential molecular dynamics algorithm in the quantum core
approximation. Atoms shown in this figure have a potential energy that is 0.1 eV higher than the
average potential energy of atoms in a perfect lattice. The remaining atoms in the simulation cell
are not shown, although interaction between all the atoms was taken into account when evaluating
energies and interatomic forces. The figure illustrates the feasibility of performing large-scale
molecular-dynamics simulations of radiation damage using the matrix potentials.

(This figure is in colour only in the electronic version)

The energies of several configurations of a self-interstitial atom defect evaluated using the
quantum core approximation (30) are given in table 1. Asterisks indicate cases where
defect configurations were found to be asymptotically unstable and decayed into lower-energy
configurations under the influence of thermal fluctuations. Values of formation energies of the
octahedral and the tetrahedral configurations were not used in the fitting procedure.

The defect formation energies given in table 1 show that the inclusion of angular terms in
the formalism does improve the agreement between the semi-empirical potential approach,
which in this work is taken in the matrix form, and first-principles electronic structure
calculations. The fact that the matrix elements of Di j have the relatively simple form (31),
and hence can be differentiated analytically to find forces acting between atoms, makes the
matrix potential method suitable for a fairly large-scale atomistic simulation. To illustrate the
point, we consider an example of a simulation that so far has never been performed using a
method based on matrix diagonalization.

Figure 2 shows a snapshot of a 380 eV collision cascade in vanadium initiated by an
impact of an energetic particle (for example, a neutron) on an atom near the centre of the
simulation cell. The snapshot corresponds to the moment approximately 0.33 ps after the
initial impact. The simulation was performed using a cell containing 265 302 atoms, and the
simulation algorithm used equations (7) and (24). This test showed that the computational
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Table 1. Calculated formation energies of various self-interstitial atom configurations.
∗ corresponds to a locally unstable configuration.

Ef (eV) Ef (eV) Ef (eV) Ef (eV)
Defect configuration DFT [8] [5] [29] present QC

111 3.14 4.58 3.27 3.14
110 3.48 4.14 3.66 3.48
100 3.57 4.79 3.60 3.57
Octahedral 3.62 4.77 3.60∗ 3.56
Tetrahedral 3.69 4.75 3.64 3.81∗

speed of the matrix potential algorithm (in the quantum core approximation) was approximately
equal to one-third of the speed of a conventional algorithm where forces are evaluated using a
spherically symmetric many-body potential (in this case it is the Ackland–Thetford potential for
vanadium [5]). The results of this test show that the matrix potential approach described in this
paper offers a relatively simple recipe for including angular terms, consistent with the symmetry
of the underlying picture of d–d bonding, in a large-scale molecular dynamics simulation of
radiation damage.
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Appendix A

The matrix elements including contributions of (ddσ), (ddπ), and (ddδ) overlap have the
form

(xy|Ĥ †Ĥ |xy) = 3l2m2(ddσ)2 + (l2 + m2 − 4l2m2)(ddπ)2 + (n2 + l2m2)(ddδ)2

(xy|Ĥ †Ĥ |yz) = 3lm2n(ddσ)2 + ln(1 − 4m2)(ddπ)2 + ln(m2 − 1)(ddδ)2

(xy|Ĥ †Ĥ |xz) = 3l2mn(ddσ)2 + mn(1 − 4l2)(ddπ)2 + mn(l2 − 1)(ddδ)2

(xy|Ĥ †Ĥ |x2 − y2) = 3
2 lm(l2 − m2)(ddσ)2 + 2lm(m2 − l2)(ddπ)2 + 1

2 lm(l2 − m2)(ddδ)2

(xy|Ĥ †Ĥ |3z2 − r 2) = √
3lm

[
n2 − 1

2 (l2 + m2)
]
(ddσ)2 − 2

√
3lmn2(ddπ)2

+
√

3

2
lm(1 + n2)(ddδ)2

(yz|Ĥ †Ĥ |yz) = 3m2n2(ddσ)2 + (m2 + n2 − 4m2n2)(ddπ)2 + (l2 + m2n2)(ddδ)2

(yz|Ĥ †Ĥ |xz) = 3n2lm(ddσ)2 + lm(1 − 4n2)(ddπ)2 + lm(n2 − 1)(ddδ)2

(yz|Ĥ †Ĥ |x2 − y2) = 3
2 mn(l2 − m2)(ddσ)2 − mn

[
1 + 2(l2 − m2)

]
(ddπ)2

+ mn
[
1 + 1

2 (l
2 − m2)

]
(ddδ)2
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(yz|Ĥ †Ĥ |3z2 − r 2) = √
3mn

[
n2 − 1

2 (l
2 + m2)

]
(ddσ)2 + √

3mn(l2 + m2 − n2)(ddπ)2

−
√

3

2
mn(l2 + m2)(ddδ)2

(xz|Ĥ †Ĥ |xz) = 3n2l2(ddσ)2 + (n2 + l2 − 4n2l2)(ddπ)2 + (m2 + n2l2)(ddδ)2

(xz|Ĥ †Ĥ |x2 − y2) = 3
2 nl(l2 − m2)(ddσ)2 + nl

[
1 − 2(l2 − m2)

]
(ddπ)2

− nl
[
1 − 1

2 (l2 − m2)
]
(ddδ)2

(xz|Ĥ †Ĥ |3z2 − r 2) = √
3ln

[
n2 − 1

2 (l2 + m2)
]
(ddσ)2 + √

3ln(l2 + m2 − n2)(ddπ)2

−
√

3

2
ln(l2 + m2)(ddδ)2

(x2 − y2|Ĥ † Ĥ |x2 − y2) = 3
4 (l

2 − m2)2(ddσ)2 + [
l2 + m2 − (l2 − m2)2

]
(ddπ)2

+ [
n2 + 1

4 (l
2 − m2)2

]
(ddδ)2

(x2 − y2|Ĥ † Ĥ |3z2 − r 2) =
√

3

2
(l2 − m2)

[
n2 − 1

2
(l2 + m2)

]
(ddσ)2

+ √
3n2(m2 − l2)(ddπ)2 +

√
3

4
(1 + n2)(l2 − m2)(ddδ)2

(3z2 − r 2|Ĥ †Ĥ |3z2 − r 2) = [
n2 − 1

2 (l2 + m2)
]2

(ddσ)2 + 3n2(l2 + m2)(ddπ)2

+ 3
4 (l

2 + m2)2(ddδ)2.

Appendix B. The sd-model

In the case where sub-bands of 3d and 4s states both contribute to bonding between atoms, the
additional s–d elements of the matrix Ĥ †Ĥ have the form

(s|Ĥ † Ĥ |s) = (ssσ)2

(s|Ĥ † Ĥ |xy) = √
3lm(sdσ)[(ddσ) + (ssσ)]

(s|Ĥ † Ĥ |xz) = √
3ln(sdσ)[(ddσ) + (ssσ)]

(s|Ĥ † Ĥ |yz) = √
3mn(sdσ)[(ddσ) + (ssσ)]

(s|Ĥ † Ĥ |x2 − y2) =
√

3

2
(l2 − m2)(sdσ)[(ddσ) + (ssσ)]

(s|Ĥ † Ĥ |3z2 − r 2) = 1
2 (3n2 − 1)(sdσ)[(ddσ) + (ssσ)]

= [
n2 − 1

2 (l2 + m2)
]
(sdσ)[(ddσ) + (ssσ)].
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